If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=51
We move all terms to the left:
x^2-18x-(51)=0
a = 1; b = -18; c = -51;
Δ = b2-4ac
Δ = -182-4·1·(-51)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{33}}{2*1}=\frac{18-4\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{33}}{2*1}=\frac{18+4\sqrt{33}}{2} $
| x^2-18x+58=-7 | | 3÷4a-72=108 | | n2-18n+38=6 | | 5x/9=7/7 | | 10-3a=55 | | (12-3y)5=15 | | (2x+5)=(x+3) | | 3(x+1)+4(5+x)=120 | | 6x-(x-4)=4 | | 9x+11=4x+5x-1 | | 9×+11=4x+5x-1 | | x=(4.5-x)*3.5 | | 5=3.5x+x | | 2x+12000=x+16000 | | 2x+16000=x+12000 | | -0.08q+0.9=0 | | 3×l/2=2/3 | | 160=20.x+5.x^2 | | 19=4u-13 | | (x+1)(x-3)+〖(x+1)〗^2=2x(x-4 | | 19=4u | | 75=3z | | 7y=-3y×y-4 | | 9x^-4+143x^-2+16=0 | | m÷3=2m= | | x+.07x=230 | | x*0.6=180337 | | 2.3z+5+9=3(z+7) | | (5x-15)(-x+2)=0 | | 3x-11=8x+14 | | (x+6)(3x-12)=0 | | x/15=-42 |